

Team Introductions

Christine Wood

- Project Manager
- o Environmental Engineer
- Water Quality Technician

Daniel Woodall

- Mechanical Engineer
- Hydraulics Technician

Lucy-Chen Inc.

Melody Harmon

- Civil Engineer
- Concrete Technician
- o Editor

Jacob Herzog

- Mechanical Engineer
- SolidWorks Technician

Outline

- Lucy-Chen Inc. Objective
- Project Background
- Data Collection & Analysis
- Design Proposal
- Implementation

Lucy-Chen Inc. Objective

Site Visit:

- Assess water systems of two Ngobe communities in Bocas del Toro, Panama.
- Test water quality.

Semester Project:

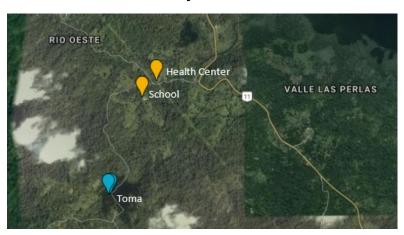
- Identify potential design proposals.
- Develop and propose design alternative.

Project Background

Project Background

Site 1: Quebrada Platano

Travel time from Almirante: 2 hours


Population: ~200

Community Features: 3 water sources,

Primary School, Community Meeting Center

Peace Corps Volunteer: Micah Kohler

Site 2: Rio Oeste Abajo

Travel time from Almirante: 20 minutes

Population: >200

Community Features: 1 water source, shared

Primary School, Community Health Center

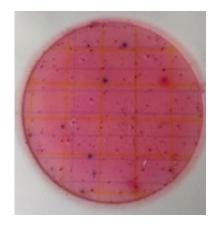
Peace Corps Volunteer: Elisabeth Schlaudt Lucy-Chen Inc.

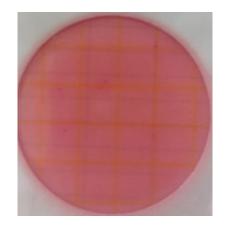
Problem Description

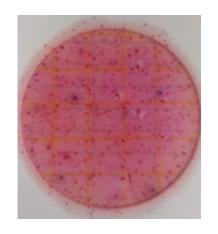
Site 1: Quebrada Platano

- Water reliability sedimentation/clogging
- Turbidity
- Transportation
- Water Quality

Problem Description


Site 2: Rio Oeste Abajo


- Water reliability
 - sedimentation/clogging
 - o pressure
- Turbidity
- Water Quality


Problem Description - Water Quality

Quebrada Platano Host Family Tap Water Quality Sample

Quebrada Platano Spring Source Pool Water Quality Sample

Rio Oeste Abajo Palo Seco Union Tank Water Quality Sample

Chlorinated Water Water Quality Sample

Site Visit - Data Collection: Quebrada Platano

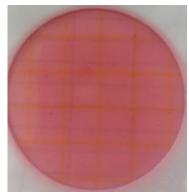
Site 1: Quebrada Platano

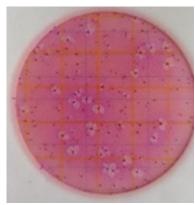
- Three Systems
 - Big Tank
 - Intake
 - Storage Tank
 - Users: Western Side
 - School
 - Intake
 - Storage Tank
 - Users: School & Eastern side
 - Spring (potential)
 - Intake
 - Users: One Family

Site Visit - Data Collection: Quebrada Platano

Data Collected

- Water Quality
 - Various Sites
- Flow Rate
 - Head Loss
- GPS/Elevation
 - GPS: Lengths
 - Elevations:Pressures
- Surveying
 - Intakes
 - Potential Tank

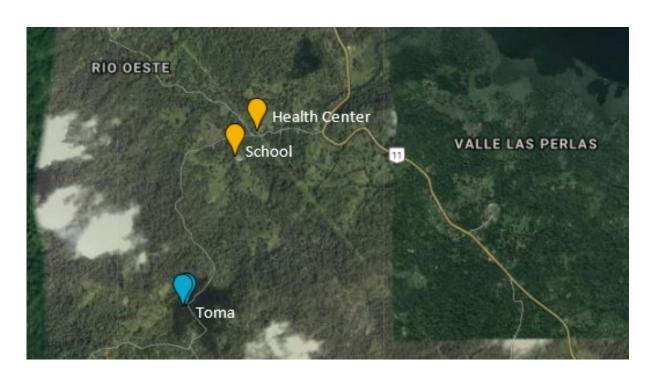




Site Visit - Data Collection: Quebrada Platano

Data/Observation Conclusions

- Surveying/Elevation results
 - Source elevations provide sufficient head
 - Spring proposed tank elevation too low
- Water Quality
 - Water Treatment
 - Reduce Sedimentation



Site Visit - Data Collection: Rio Oeste Abajo

Site 2: Rio Oeste Abajo

- One System
 - Palo Seco
 - Intake
 - Storage Tank
 - Users: School,Health Center,Community

Site Visit - Data Collection: Rio Oeste Abajo

Data Collected

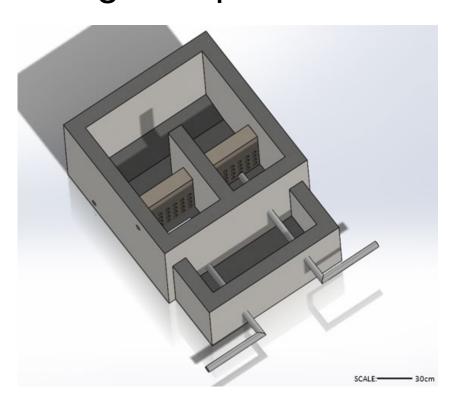
- Water Quality
 - Various Sites
- Flow Rate
 - Head Loss
- GPS/Elevation
 - GPS: Lengths
 - Elevations:Pressures
- Surveying
 - Intake

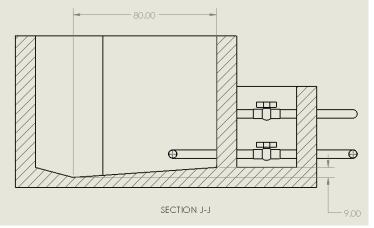
Site Visit - Data Collection: Rio Oeste Abajo

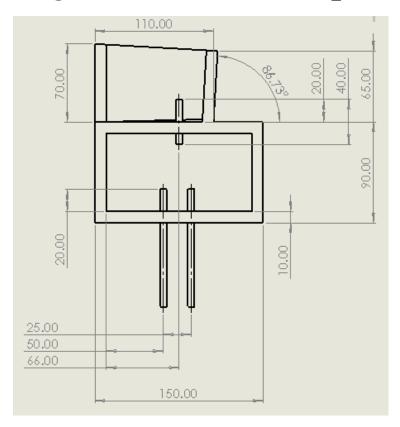
Data/Observation Conclusions

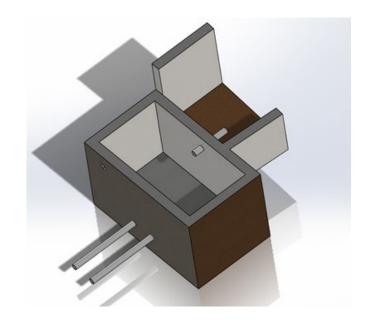
- Survey/Elevation Results
 - Intake & Tank = Good
 - Too much pressure
- Water Quality
 - Reduce sediment & bacteria
 - Water conservation

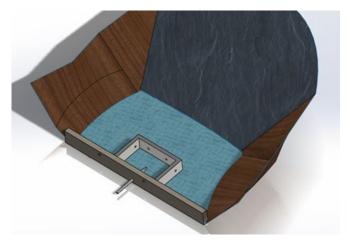
Project Identification

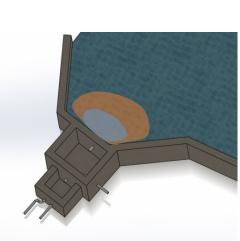

Summary List of Proposed Designs

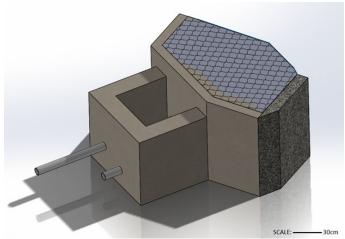

- Quebrada Platano
 - a. Big Tank Network
 - i. Sedimentation Tank
 - ii. Inlet Alternatives
 - iii. Pipe Systems
 - b. Spring Network
 - i. Spring box
 - ii. Storage Tank
 - iii. Pipe System & Taps
 - c. School Network
 - Sedimentation Tank
 - ii Inlet Alternatives
- Rio Oeste Abajo
 - a. Palo Seco Network
 - i. Sedimentation Tank
 - ii. New Storage Tank
 - iii. Inlet Alternatives
 - iv. Pipe System

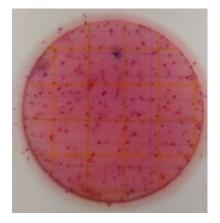

Design Proposals- Sedimentation Tank

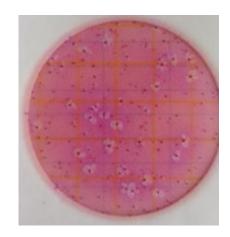





Design Proposals- Spring Box




Design Proposals- Inlet Improvements



Design Proposals- Water Treatment


Quebrada Platano School Tap Water Quality Sample

Rio Oeste Abajo School Tap Water Quality Sample

Implementation - EPANET Analysis

Network	Min. Head in System (ft)	Max. Head in System (ft)	Min. Pressure in System (psi)	Max Pressure in System (psi)
Quebrada Platano: Big Tank	40.9	43.9	17.7	19.0

Implementation - Construction Schedule

Project	Estimated Working Days	Estimated Non- Working Days	Estimated Total Duration (days)
Big Tank	21	8	29
Spring Source	38	14	52
School Tank	28	5	33
Palo Seco	49	14	63

It is recommended that construction take place during the dry season (January-April).

Implementation - Cost Estimate

Project	Labor	Equipment	Material	Total Cost Estimate*
Big Tank	\$ 1,010	\$ 140	\$ 430	\$ 1,600
Spring Source	\$ 1,830	\$ 280	\$ 700	\$ 2,800
School Tank	\$ 1,350	\$ 230	\$ 460	\$ 2,100
Palo Seco	\$ 2,350	\$ 370	\$ 990	\$ 3,700

^{*20%} contingency not included.

^{*}Mobilization of materials was calculated for an overall site, not per project.

Implementation

- Peace Corp Volunteers Propose Designs
- Dry Season Construction (January April)

Sustainability

- Sedimentation Tanks Maintenance
- Inlet Structures Maintenance

Conclusion/Recommendations

- Implementation Adjustments
- Water Committee

- Water Treatment
- Secure Funding

